Часы на газоразрядных. Часы на газоразрядных индикаторах. Часы с контроллером и кнопками управления

Всем привет. Хочу рассказать, о моей недавней «поделке», а именно часах на газоразрядных индикаторах (ГРИ).
Газоразрядные индикаторы давно уж канули в лету, лично меня они даже самые «новые» старше. Использовали ГРИ в основном в часах и измерительных приборах, позже на их место пришли вакуумно-люминесцентные индикаторы.
Так что же из себя представляет лампа ГРИ? Это стеклянный баллон (это же ведь лампа!) наполненный внутри неоном с небольшим количеством ртути. Внутри так же расположены электроды, изогнутые в виде цифр или знаков. Интересно то, что символы расположены друг за другом, следовательно, каждый символ светится на своей глубине. Если есть катоды, должен быть и анод! – он один на всех. Так вот, чтобы зажечь определенный символ в индикаторе, нужно приложить напряжение, причем не малое, между анодом и катодом соответствующего символа.
Для справки хотелось бы написать, как же происходит свечение. При приложении высокого напряжения между анодом и катодом газ в лампе, который до этого был нейтрален, начинает ионизироваться (т.е. из нейтрального атома образуется положительный ион и электрон). Образовавшиеся положительные ионы, начинают двигаться к катоду, высвободившееся электроны, к аноду. При этом электроны «по пути» дополнительно ионизируют атомы газа, с которыми сталкиваются. В результате возникает лавинообразный процесс ионизации и появляется электрический ток в лампе (тлеющий разряд). Так вот теперь самое интересное, помимо процесса ионизации, т.е. образования положительного иона и электрона, существует и обратный процесс, называют его рекомбинацией. Когда положительный ион и электрон «превращаются» опять в одно целое! При этом происходит выделение энергии в виде свечения, которое мы и наблюдаем.
Теперь непосредственно к часам. Лампы я использовал ИН-12А. Они имеют не совсем классическую форму ламп и содержат символы 0-9.
Прикупил я изрядное количество ламп, которые не были в использовании!

Так сказать, чтоб на всех хватило!
Интересно было сделать миниатюрное устройство. В итоге получились довольно компактное произведение.
Корпус вырезал на лазерном станке из черного акрила по 3D модели, которую делал исходя из печатных плат:



Схема устройства.
Часы состоят из двух плат. На первой плате расположены четыре лампы ИН-12А, дешифратор К155ИД1 и оптроны, для управления анодами ламп.


Так же на плате имеются входы для подключения питания, управления оптронами и дешифратором.
Вторая плата – это уже мозг часов. На ней расположен микроконтроллер, часы реального времени, блок преобразования 9В в 12В, блок преобразования 9В в 5В, две кнопки управления, пищалка и выводы всех сигнальных проводов, совпадающих с платой индикации. Часы реального времени имеют резервную батарею, что не позволяет сбиваться времени при отключении основного питания. Питание производится от блока 220В-9В (достаточно 200мА).





Соединяются эти платы с использованием штыревого разъема, но не вставкой, а пайкой!





Собирается все это дело таким образом. Сначала длинный винт М3*40. На этот винт одевается трубка от воздушного шланга 4мм (он плотный, и подходит для удерживания печатных плат, я его очень часто использую). Потом между печатными платами стойка (печатал на 3D принтере) и потом латунная сквозная гайка все это затягивает. И задняя стенка будет крепиться тоже болтами М3 к сквозным латунным гайкам.




При сборке выяснилась такая неприятная особенность. Прошивку написал, но часы отказывались работать, лампы мерцали в непонятном порядке. Проблема решилась установкой дополнительного конденсатора между +5В и массой прямо возле микроконтроллера. Его видно на фото сверху (установил его в разъем для программирования).
Файлы проекта в программе EagleCAD и прошивку в CodeVisionAVR прилагаю. Можете модернизировать если необходимо в своих целях)))
Прошивка часов сделана довольно просто без наворотов! Просто часы. Две кнопки управления. Одна кнопка-«режим», вторая «настройка». Нажав кнопку «режим» в первый раз, отображаются только цифры, отвечающие за часы, если в этом режиме нажать «настройка», то часы начнут увеличиваться (при достижении 23 сбрасываются в 00). Если нажать еще раз на «режим», будут отображаться только минуты. Соответственно, если нажать в этом режиме «настройка», будут увеличиваться минуты так же в «круговом» порядке. При еще одном нажатии на «режим» – отображаются и часы и минуты. При изменении часов и минут, секунды обнуляются.

Схема и описание цифровых электронных часов на индикаторах ИН-12(ИН-18) и микросхемах К176ИЕ12, К561ИЕ8. В настоящее на просторах интернета можно встретить множество всевозможных схем и конструкций часов на микроконтроллерах и практически уже нет схем на обычной логической элементной базе.

Я нашел только три подробных схемы электронных часов на логических микросхемах. Схемы устройств на основе микроконтроллеров, можно сказать, по всем параметрам выигрывают у старых схем на обычной элементарной базе.

И тем не менее, не у всех есть навыки работы и программирования микроконтроллеров. Стоит заметить, что и далеко не у всех радиолюбителей есть возможность приобрести сами микроконтроллеры, в силу тех или иных причин.

Имея в наличии старые запасы микросхем серий к176 и к561, решил подарить им вторую жизнь, собрав часы по найденной в журнале радиоконструктор (№3,2013) схеме.

Принципиальная схема

Как видно из схемы отображение времени ведется на четырех индикаторах ИН-14.

Рис. 1. Принципиальная схема самодельных цифровых часов на индикаторах ИН-14 (ИН-18) и К176ИЕ12, К561ИЕ8.

Для добавления к часам секундных разрядов нужно собрать еще одну схему со счетчиком, как для счета минут (на D2 и D3), подключить эти два счетчика последовательно уже имеющимся: с 12-го вывода счетчика десятков секунд подать импульсы на вывод 14 D2.

Также, нужно на вход нового счетчика единиц секунд (вывод 14) подавать импульсы с периодом не в одну минуту, а в одну секунду (берем с вывода 4 D1). Получается что для добавления секундных сегментов понадобится еще две микросхемы К561ИЕ8, два индикатора и 16 высоковольтных транзисторов.

Детали и печатная плата

Рис. 2. Рисунок печатной платы для самодельных цифровых часов.

Не стремился сделать ее идеальной, без навесных проводников, а поэтому получилась она довольно простой. Все остальные соединения электронных компонентов, которые отсутствуют на рисунке печатной платы, выполнил соединительными проводниками.

Рис. 3. Фото готовой печатной платы.

Благо дело схема весьма простая и не сложно разобраться что и куда. На бумаге печатка исправлена, без ошибок и в травленом виде тоже без ошибок.

Рис. 4. Печатная плата с впаянными электронными компонентами и проволочными соединениями.

Получилось, немножко корявенько и не очень аккуратно, тем не менее вполне работоспособно.

Мною сразу был сделан вариант часов с секундами. Секундные счетчики у меня обозначены D7 D8.

От себя добавлю: вывод 12 D8 нужно подсоединить к выводу 14 D2 через через резистор сопротивлением 2,2 КОм. Без использования резистора перестанет работать установка времени.

Конструкция

Установка времени, как можно увидеть из схемы, выполняется комбинированным с выключателем переменным резистором. Суть такова: чем выше сопротивление резистора, тем медленнее идет счет часов и минут, секунды при этом останавливаются.

Рис. 5. Собранная электронная схема часов.

Рис. 6. Включенные часы без корпуса, плата и индикаторы.

И соответственно, чем меньше сопротивление, тем быстрее идет счет. Очень удобно без использования набора из кнопок.

Рис. 7. Готовые часы в корпусе с индикаторами ИН-12.

Рис. 8. Готовые часы в корпусе с индикаторами ИН-12 и с включенной подсветкой.

У меня всего одна кнопка, которая включает зеленую подсветку. Индикаторы я использовал ин-12а (без точки) и чуть позднее был собран вариант на ИН-18.

Рис. 9. Готовые часы в корпусе с индикаторами ИН-18.

Их то только было на одни часы, купить ин-18 можно, но вот люди которые их продают, мягко говоря обнаглевшие рвачи, просят за одну лампу ин-18 от 2 до 4 тысяч!! Что просто немыслимо.

Рис. 10. Готовые часы в корпусе с индикаторами ИН-18 (включена подсветка).

Ну а газоразрядные индикаторы ИН-12 можно купить по цене всего 46 рублей за штучку. Вот собственно и все что нужно сказать по данной схеме. Корпус был изготовлен из остатков панели МДФ, напилены заготовки на стороны корпуса и склеены клеем ПВА, сверху все обклеено декоративной пленкой.

При правильной сборке схема запускается сразу и без проблем. Возможно моя, не претендующая на оригинальность, конструкция с обзором кому-то пригодится при повторении..

Схема: есть (PIC16f886,PIC16F628)

Плата:есть ( Sprint-Layout )

Прошивка:есть

Исходник:нет

Описание: eсть

Особенности: отсутствие РТС, софтовый DC-DC высокого напряжения.

Схема:

Часы работают в 24 часовом формате.
Есть функции будильника и отображения температуры.
Питание в диапазоне 4,5…15В.
Управление энкодером с кнопкой.

Конструкция состоит из двух плат – плата с индикаторами и плата управления.
Платы соединяются через разъемы PLS и PBS . Разъемы паяются со стороны дорожек.


Вход в настройки будильника коротким нажатием на кнопку энкодера (разделитель минут и часов светит не мигая). Вращением энкодера настраиваем время сигнала. Повторное короткое нажатие (или 10 сек бездействия) – выход в режим часов (разделитель мигает). Разрешение срабатывания будильника – длинное нажатие (удержание) до появления сигнала: короткий сигнал – отключено, тональный сигнал – включено. После срабатывания будильника тональный сигнал звучит 1 мин. Тональный сигнал можно прервать нажатием на кнопку экнодера.

Температура выводится с 25 по 30 сек.

С 9:00 до 21:00 часы издают короткий почасовой сигнал.

Точность работы – примерно 1 сек в сутки (проверено в другом проекте). Кварц обвязывать (нагружать) рекомендованными ёмкостями. Место монтажа кварца и прилегающие линии отмыть и просушить. Корпус кварца соединить с минусом.


Архив проекта .
.

Простые часы с ретро лампами ИН-12

Схема:

Управление часами тремя кнопками – «увеличить», «уменьшить» и «ок» (выбор режим а ).

Часы работают в 24 часовом формате.Короткое нажатие на кнопку «ок» перебирает режимы: часы, будильник, яркость. Есть будильник. Длинное нажатие на кнопку «ок» определяет срабатывание будильника: короткий сигнал – отключено, тональный сигнал – включено.В часах можно настроить яркость свечения ламп и, соответственно, ток потребления. Подстройка яркости в пределах 0…99 уровней. С 9:00 до 21:00 часы издают короткий почасовой сигнал.

Реализован метод борьбы с отравлением катодов ламп (или антиотравление). Перед сменой минут происходит быстрый перебор всех цифр во всех лампах/

Некоторые детали могут быть заменены:

Стабилизатор напряжения КР1158ЕН5А (TO -251) = 7805 (TO -220)

Полевой транзистор STU6N62K3 (IPAK ) = IRF840 (TO -220)

Индуктивность 1000 мкГн = 470 мкГн.

Конденсатор 4,7мкФ х 350В = 10 мкФ х 350В

Диод Шоттки 1N5817 = 1N5819 (нежелательно).

Много аналогов у установочных компонентов – почти любые горизонтальные держатели батареи CR 2032, тактовые кнопки 6х6 мм, пьезоизлучатели диаметром до 12мм, любые доступные панели под микросхемы.

В данной статье речь пойдет об изготовлении оригинальных и необычных часов. Их необыкновенность заключается в том, что индикация времени осуществляется при помощи цифровых индикаторных ламп. Таких ламп когда-то было выпущено огромное количество, как у нас, так и за рубежом. Использовались они во многих устройствах начиная от часов и заканчивая измерительной техникой. Но после появления светодиодных индикаторов лампы постепенно вышли из употребления. И вот, благодаря развитию микропроцессорной техники стало возможным создание часов с относительно простой схемой на цифровых индикаторных лампах. Думаю, не лишним будет сказать, что в основном использовались лампы двух типов люминесцентные и газоразрядные. К преимуществам люминесцентных индикаторов следует отнести низкое рабочее напряжение и наличие нескольких разрядов в одной лампе (хотя среди газоразрядных тоже встречаются такие экземпляры, но найти их значительно сложнее). Но все плюсы данного типа ламп перекрывает один огромный минус – наличие люминофора, который со временем выгорает, и свечение тускнеет или прекращается. По этой причине нельзя использовать б/у лампы.

Газоразрядные индикаторы избавлены от этого недостатка, т.к. в них светится газовый разряд. По сути, этот тип ламп представляет собой неоновую лампу с несколькими катодами. Благодаря этому срок службы у газоразрядных индикаторов гораздо выше. Кроме этого одинаково хорошо работают и новые и б/у лампы (а часто б/у работают лучше). Без недостатков все же не обошлось, рабочее напряжение газоразрядных индикаторов больше 100 В. Но решить вопрос с напряжение гораздо проще, чем с выгорающим люминофором. В интернете такие часы распространены под названием NIXIE CLOCK.

Сами индикаторы выглядят вот так:

Итак, на счет конструктивных особенностей вроде все понятно, теперь приступим к проектированию схемы наших часов. Начнем с проектирования высоковольтного источника напряжения. Тут есть два пути. Первый – применить трансформатор со вторичной обмоткой на 110-120 В. Но такой трансформатор будет либо слишком громоздкий, либо его придется мотать самому, перспектива так себе. Да и напряжение регулировать проблематично. Второй путь – собрать step up преобразователь. Ну тут уж плюсов побольше будет, во-первых он займет мало места, во-вторых в нем присутствует защита от КЗ и в-третьих можно легко регулировать напряжение на выходе. В общем, есть все, что для счастья надо. Я выбрал второй путь, т.к. искать трансформатор и обмоточный провод никакого желания не было, да и миниатюрности хотелось. Преобразователь решено было собирать на MC34063, т.к. был опыт работы с ней. Получилась вот такая схема:

Сначала она была собрана на макетной плате и показала отличные результаты. Все запустилось сразу и никакой настройки не потребовалось. При питании от 12В. на выходе получилось 175В. В собранном виде блок питания часов выглядит следующим образом:

На плату сразу был установлен линейный стабилизатор LM7805 для питания электроники часов и трансформатор.

Следующим этапом разработки было проектирование схемы включения ламп. В принципе управление лампами ничем не отличается от управления семисегментными индикаторами за исключением высокого напряжения. Т.е. достаточно подать положительное напряжение на анод, и соединить с минусом питания соответствующий катод. На этом этапе требуется решить две задачи: согласование уровней МК (5В) и ламп (170В), и переключение катодов ламп (именно они являются цифрами). После некоторого времени размышлений и экспериментов была создана вот такая схема для управления анодами ламп:

А управление катодами осуществляется очень легко, для этого придумали специальную микросхему К155ИД1. Правда, они давно сняты с производства, как и лампы, но купить их не составляет проблем. Т.е. для управления катодами требуется всего лишь подключить их к соответствующим выводам микросхемы и подать на вход данные в двоичном формате. Да, чуть не забыл, питается она от 5В., ну очень удобная штуковина. Индикацию было решено сделать динамической т.к. в противном случае пришлось бы ставить К155ИД1 на каждую лампу, а их будет 6 штук. Общая схема получилась такой:

Под каждой лампой я установил яркий светодиод красного цвета свечения, так красивее. В собранном виде плата выглядит вот так:

Панельки под лампы найти не удалось, поэтому пришлось импровизировать. В итоге были разобраны старые разъемы, похожие на современные COM, из них были извлечены контакты и после некоторых манипуляций с кусачками и надфелем они были впаяны в плату. Для ИН-17 панельки делать не стал, сделал только для ИН-8.

Самое сложное позади, осталось разработать схему “мозга” часов. Для этого я выбрал микроконтроллер Mega8. Ну а дальше все совсем легко, просто берем и подключаем к нему все так, как нам удобно. В итоге в схеме часов появились 3 кнопки для управления, микросхема часов реального времени DS1307, цифровой термометр DS18B20, и пара транзисторов для управления подсветкой. Для удобства анодные ключи подключаем на один порт, в данном случае это порт С. В собранном виде это выглядит вот так:

На плате есть небольшая ошибка, но в приложенных файлах плат она исправлена. Проводами подпаян разъем для прошивки МК, после прошивки устройства его следует отпаять.

Ну а теперь неплохо было бы нарисовать общую схему, сказано – сделано, вот она:

А вот так все это выглядит целиком в собранном виде:

Теперь осталось всего лишь написать прошивку для микроконтроллера, что и было сделано. Функционал получился следующий:

Отображение времени, даты и температуры. При кратковременном нажатии кнопки MENU происходит смена режима отображения.

1 режим - только время.

2 режим - время 2 мин. дата 10 сек.

3 режим - время 2 мин. температура 10 сек.

4 режим - время 2 мин. дата 10 сек. температура 10 сек.

При удержании включается настройка времени и даты, переход по настройкам по нажатию кнопки MENU

Максимальное количество датчиков DS18B20 – 2 . Если температура не нужна, можно их вообще не ставить, на работу часов это никак не повлияет. Горячего подключения датчико не предусмотрено.

При кратковременном нажатии на кнопку UP включается дата на 2 сек. При удержании включается/выключается подсветка.

При кратковременном нажатии на кнопку DOWN включается температура на 2 сек.

С 00:00 до 7:00 яркость понижена.

Работает все это дело вот так:

К проекту прилагаются исходники прошивки. Код содержит комментарии так что изменить функционал будет не трудно. Программа написана в Eclipse, но код без каких-либо изменений компилируется в AVR Studio. МК работает от внутреннего генератора на частоте 8МГц. Фьюзы выставляются вот так:

А в шестнадцатеричном виде вот так: HIGH: D9 , LOW: D4

Также прилагаются платы с исправленными ошибками.

Данные часы работают в течение месяца. Никаких проблем в работе выявлено не было. Стабилизатор LM7805 и транзистор преобразователя едва теплые. Трансформатор нагревается градусов до 40, поэтому если планируется установка часов в корпус без вентиляционных отверстий, трансформатор придется взять большей мощности. В моих часах он обеспечивает ток в районе 200мА. Точность хода сильно зависит от примененного кварца на 32,768 КГц. Кварц, купленный в магазине, ставить не желательно. Наилучшие результаты показали кварцы из материнских плат и мобильных телефонов.

Кроме ламп, использованных в моей схеме, можно устанавливать любые другие газоразрядные индикаторы. Для этого придется изменить разводку платы, а для некоторых ламп напряжение повышающего преобразователя и резисторы на анодах.

Внимание: устройство содержит источник высокого напряжения!!! Ток небольшой, но достаточно ощутимый!!! Поэтому при работе с устройством следует соблюдать осторожность!

Один из вариантов сборки данного проекта:

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Газоразрядный индикатор ИН-8 4 В блокнот
Газоразрядный индикатор ИН-17 2 В блокнот
CPU МК AVR 8-бит

ATmega8

1 В блокнот
Часы реального времени (RTC)

DS1307

1 В блокнот
Датчик температуры

DS18B20

2 В блокнот
DD1 Микросхема К155ИД1 1 В блокнот
IC1 DC/DC импульсный конвертер

MC34063A

1 В блокнот
VR1 Линейный регулятор

LM7805

1 В блокнот
VT1-VT6 Биполярный транзистор

MPSA92

6 В блокнот
VT7-VT12 Биполярный транзистор

MPSA42

6 В блокнот
VT13, VT14 Биполярный транзистор

BC847

2 В блокнот
VT15 Биполярный транзистор

КТ3102

1 В блокнот
VT16 Биполярный транзистор

КТ3107А

1 В блокнот
VT17 MOSFET-транзистор

IRF840

1 В блокнот
VDS1 Диодный мост 1 В блокнот
VD1 Выпрямительный диод

HER106

1 В блокнот
HL1-HL6 Светодиод 6 В блокнот
C1 100 мкФ 1 В блокнот
C2, C3-C5, C7, C9, C11 Конденсатор 0.1 мкФ 7 В блокнот
C6, C8 Электролитический конденсатор 1000 мкФ 2 В блокнот
C10 Конденсатор 510 пФ 1 В блокнот
C12 Электролитический конденсатор 4.7 мкФ 400В 1 В блокнот
R1-R4, R6-R8 Резистор

4.7 кОм

7 В блокнот
R5, R9-R14, R27-R32, R42 Резистор

10 кОм

14 В блокнот
R15, R17, R19, R21, R23, R25, R45 Резистор

1 МОм

7 В блокнот
R16, R18, R20, R22, R24, R26 Резистор

13 кОм

6 В блокнот
R33, R34 Резистор

К шестой годовщине поздравляю РадиоКота и хочется преподнести традиционный подарок - часы на газоразрядных индикаторах. Кстати, с шестью большими лампочками (э-э-э, дуть на них не надо).

Прототипом для часов послужила схема опубликованная на сайте http://www.electricstuff.co.uk/nixclock.htm и повторенная многими радиолюбителями. Восхищение вызывает малое число компонентов и завораживает простота схемы. Однако, анализ схемы показал, что при пректировании заложены некоторые упрощения. Во-первых, наличие RC-цепочек, что делает схему не чисто "цифровой". Во-вторых, несколько странный способ установки времени. Так же мало приемлемым кажется использование частоты сети в качестве опорной для отсчета времени, 12-ти часовой ход и наличие гальванической связи с электросетью.



Предлагаемые часы содержат на одну логическую микросхему больше (9 против 8), питаются от 12 вольт и свободны от недостатков прототипа, что совершенно не мешает иметь другие. Тактовый генератор на часовом кварце выполнен на микросхеме DD2. Эта микросхема содержит в себе генератор и 14-ти разрядный делитель, позволяющий получить набор поделенных частот. Используя часовой кварц (с частотой 32768Гц) на последнем делителе получим частоту 2Гц, которая пройдя делитель на 2, выполненный на триггере DD4A, даст секундные импульсы. Секундные импульсы далее поступают на счетчик секунд выполненный на счетчиках DD5 и DD8. Счетчик DD5 считает единицы секунд и с выхода переноса (вывод 12) поступает на счетный вход DD8, который считает десятки секунд. Для того, чтобы счетчик считал только до 60-ти выход Q6 счетчика DD8 соединен с входами сброс обоих счетчиков и триггера DD4A. Диод VD5 обеспечивает развязку выхода в случае, если сброс будет формироваться нажатием на кнопку S3 "Сброс секунд".

Счетчик минут выполнен аналогично на счетчиках DD1 и DD3. Отличие только в том, что сформированный сигнал сброса по достижении 60 сбрасывает только счетчик десятков минут DD3. Также отличается способ подачи тактовых импульсов. Сформированный сигнал сброса по переполнению счетчика секунд поступает на вход разрешения счета счетчика минут при постоянном наличии лог.1 на входе счетных импульсов через резистор R1. Аналогично сигнал переполнения счетчика десятков минут поступает на вход счетчика часов.

Счетчик часов выполнен на микросхемах DD6, DD9, а на микросхеме DD7 собрана схема сброса счетчика часов по достижении 24. Элемент И-НЕ DD7A устанавливается в лог.0 в том случае, если лог.1 появится на выходе Q4 счетчика DD6 и Q2 счетчика десятков часов DD9. Этот уровень опрокидывает триггер выполненный на элементах DD7B и DD7D, который и формирует сброс счетчиков DD6 и DD9. Активный уровень будет удерживаться около 1/8196 секунды, пока не придет импульс с выхода Q4 DD2 и не вернет триггер в исходное состояние. Такой сложный сброс выполнен потому, что из-за разного быстродействия микросхем одна может сброситься быстрее другой и сигнал сброса может сняться не успев сбросить второй счетчик. Это будет проявляться в том, что после 23:59 может установиться 04:00 или 20:00 вместо полуночи. Как правило, если микросхемы из одной партии - их параметры близки и такая проблема не возникает. В таком случае можно было бы обойтись всего двумя элементами И-НЕ, но так как остаются свободными еще два элемента - то почему бы не сделать всё "правильно"?

Для установки времени используются три кнопки S1-S3:"установка минут", "установка часов" и "сброс секунд". Нажав на кнопку S3 подается сигнал сброса на оба счетчика секунд и делитель DD4A и удерживая кнопку счетчики также остаются в сброшенном состоянии. Отпустив кнопку, счетчики начинают отсчет. Это позволяет установить время с дискретностью в пол-секунды (так как делитель DD2 не сбрасывается, а продолжает формировать импульсы в той же фазе, что и до сброса). Если необходимо точнее, то сигнал сброса надо было бы завести также на вход 12 микросхемы DD2, но это не позволит устанавливать минуты и часы удерживая кнопку сброса секунд.

Установка минут и часов производится кнопками S1 и S2 следующим образом: импульсы следующие с частотой 2 Гц при нажатии на кнопку поступают на вход CLK соответствующего счетчика. Чтобы не проявился эффект дребезга контактов выключателя приняты определенные меры. Самое главное - в момент замыкания контактов потенциалы на них должны быть одинаковыми. Правый по схеме контакт имеет потенциал питания (лог.1) через резистор R1 (R10 - для S2), а на левый большую часть времени подается лог.1 с выхода DD4B. Для инкремента счетчиков генерятся короткие отрицательные импульсы длиной 1/128 секунды. Эти импульсы формирует триггер DD4B. По фронту импульсов с частотой 2Гц с выхода Q14 микросхемы DD2 триггер устанавливается в единичное состояние, а через 1/128-ю секунды, когда на выходе Q9 DD2 устанавливается высокий уровень, триггер сбрасывается. Вероятность нажать кнопку именно в момент импульса очень мала, следовательно, низка вероятность получить ощущение дискомфорта при установке времени.

Конечно, установка времени сделана далеко не идеально. При сбросе секунд не происходит "округление" - просто сбрасываются секунды, а минуты и часы остаются неизменными. При установке минут, при переходе 59 -> 00 происходит инкремент часов. Но тем не менее, без существенного усложнения схемы удалось сделать установку более комфортной.

Сигналы с выходов счетчиков поступают на ключи, которые подают отрицательный потенциал на катоды индикаторов. Ключи выполнены на полевых транзисторах. Можно использовать ZVNL120A в корпусе E-line (совместимый с TO-92), но они достаточно дороги. Гораздо дешевле, но, вроде, сняты с производства BS107-BS108. Применение полевых транзисторов с изолированным затвором вызвано желанием уменьшить потребляемый цифровой частью ток. И именно с этой целью применена микросхема DD7 (этот узел можно сделать на двух диодах и одном резисторе, но потребление при этом возрастёт стократно). У изготовленного экземпляра потребление цифровой части составило 15мка от резервного литиевого элемента 3в (разумеется, ни одна кнопка не должна быть нажата!) и даже без резервного элемента при переключении источников питания ход времени не прерывался.

В случае, если не гнаться за минимальным потреблением, ключи можно выполнить на широкораспространенных биполярных транзисторах MPSA42, заменив сопротивления в цепи базы на 33 килоом.

Питание часов производится от источника тока напряжением 12 вольт, которое подается на разъем J1. Диод VD3 предназначен для защиты от переполюсовки. Далее это напряжение через интегральный стабилизатор DA1 78L05 (78L06) поступает на логические микросхемы через диод VD2. Резервное питание подается туда же от литиевого элемента через диод VD1.

Преобразователь высокого напряжения выполнен на микросхеме DA2 UC3843, транзисторе VT1 и трансформаторе T1. Схема преобразователя честно слизана с просторов интернета и мало чем отличается от типового включения примененной микросхемы. Подстроечный резистор R18 предназначен для установки выходного напряжения. Трансформатор намотан на магнитопроводе Epcos N87 EFD20 с зазором 0.5мм. Первичная обмотка содержит 29 витков провода 0.4 мм, вторичная 300 витков проводом 0.12 мм.



Конструктивно часы выполнены на двух платах 160x62мм: управления и индикации. Между собой соединены 50-ти контактным разъёмом. Плата индикации расчитана под лампы ИН-14, но легко можно переделать и под другие лампы. Обе платы изготавливаются из одностороннего стеклотекстолита. На плате управления перед установкой компонентов необходимо установить перемычки (по данным последнего учета 42 штуки). Транзисторы VT2-VT48 и резисторы R25-R69 устанавливаются так же как и в оригинальной конструкции (см.раздел "assembly notes"). Следует учесть, что цоколевка разных транзисторов различается, поэтому при их установке не следует руководствоваться сборочным чертежом, а проверить по справочному листку расположение выводов. Электролитические конденсаторы следует выбрать с диаметром не превышающем 10мм. Они устанавливаются на боку. Транзистор VT1 также изгибается горизонтально, чтобы высота компонентов не превышала 10 мм. Это позволит установить платы друг над другом с дистанцером 12мм. Приобрести 50-ти контактный разъём достаточно трудно, поэтому его можно составить из нескольких с меньшим числом контактов (на схеме он составлен из 2-х 25-ти контактных разъёмов JP1-JP2 и JP3-JP4). Приобретая их следует обратить внимание на возможность их объединять (stackable). В противном случае действует общее правило: "перед установкой деталь доводится по месту напильником". На плате управления устанавливается гнездовая часть разъёма, на плате индикации - штыревая. На плате индикации разъём устанавливается со стороны печатных проводников.

Микросхемы можно применить КМОП серий HEFxxxx, CDxxxx, 74НСxxxx. Нежелательно применение микросхем серии 74HCTxxxx (они не нормированы на питание ниже 4.5в, поэтому резервное питание придется переделать). Почти все логические микросхемы можно заменить отечественными аналогами (К561ИЕ8, К561ТМ1(2), К561ЛА7), кроме 4060 - ей аналога нет. Функционально её можно заменить двумя микросхемами: К561ИЕ16 и К561ЛА7.

Рекомендуется при сборке сначала установить компоненты высоковольтного преобразователя и его отрегулировать. Резистором R18 выставить выходное напряжение 180-200 вольт. Работу следует проводить осторожно: 180 вольт - опасное для жизни напряжение и это напряжение держится в конденсаторах несколько секунд после отключения питания. После настройки преобразователя можно установить остальные детали и проверить работу вцелом. При первом включении, из-за того что в часах не предусмотрена цепь сброса счетчиков в начальное состояние, может возникнуть ситуация, когда некоторые лампы не будут ничего показывать или наоборот, будут светить несколько цифр разом. Если это появилось на индикаторах отображающих секунды достаточно просто нажать кнопку сброс секунд. Если в часах и/или минутах, то соответствующей кнопкой установки надо "прокрутить" счетчики до получения вменяемых показаний.Если это не помогает, то возможной причиной может быть дефект монтажа - следует проверить нет ли коротких замыканий между дорожками или обрывов. Впоследствии, если установлен резервный элемент питания, такая надобность не должна возникнуть.

Если быть до конца честным с собой, то в этой схеме есть еще пара скользких моментов - это перенос из счетчика секунд в счетчик минут и со счетчика минут в счетчик секунд. По хорошему, там тоже следовало бы установить триггер - так как уровень появившийся на выходе Q6 создает и сброс для него же, и счетный импульс для следующего счетчика. И если сброс произойдет быстрее, чем следующий счетчик перейдет в следующее состояние, то произойдет сбой. На практике, такое маловероятно (если не собрать разношерстную компанию счетчиков с сильно различающимся быстродействием), но тем не менее теоретически возможно. Так что если случится такая ситуация - придется в схему вводить задерживающие RC-цепочки на сброс. Мне же очень не хотелось вводить десятую и одиннадцатую микросхему. И так уже простая схема превратилась в достаточно сложную.